Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 10372, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29991727

RESUMO

Hypokalemic periodic paralysis is a skeletal muscle disease characterized by episodic weakness associated with low serum potassium. We compared clinical and biophysical effects of R222W, the first hNaV1.4 domain I mutation linked to this disease. R222W patients exhibited a higher density of fibers with depolarized resting membrane potentials and produced action potentials that were attenuated compared to controls. Functional characterization of the R222W mutation in heterologous expression included the inactivation deficient IFM/QQQ background to isolate activation. R222W decreased sodium current and slowed activation without affecting probability. Consistent with the phenotype of muscle weakness, R222W shifted fast inactivation to hyperpolarized potentials, promoted more rapid entry, and slowed recovery. R222W increased the extent of slow inactivation and slowed its recovery. A two-compartment skeletal muscle fiber model revealed that defects in fast inactivation sufficiently explain action potential attenuation in patients. Molecular dynamics simulations showed that R222W disrupted electrostatic interactions within the gating pore, supporting the observation that R222W promotes omega current at hyperpolarized potentials. Sodium channel inactivation defects produced by R222W are the primary driver of skeletal muscle fiber action potential attenuation, while hyperpolarization-induced omega current produced by that mutation promotes muscle fiber depolarization.


Assuntos
Potenciais de Ação/genética , Paralisia Periódica Hipopotassêmica/genética , Debilidade Muscular/fisiopatologia , Mutação , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Humanos , Potenciais da Membrana , Simulação de Dinâmica Molecular , Fibras Musculares Esqueléticas , Debilidade Muscular/etiologia
2.
Acta Myol ; 37(3): 193-203, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30838349

RESUMO

INTRODUCTION: Periodic paralyses (PP) are recurrent episodes of flaccid limb muscle weakness. Next to autosomal dominant forms, sporadic PP (SPP) cases are known but their genetics are unclear. METHODS: In a patient with hypokalemic SPP, we performed exome sequencing to identify a candidate gene. We sequenced this gene in 263 unrelated PP patients without any known causative mutations. Then we performed functional analysis of all variants found and molecular modelling for interpretation. RESULTS: Exome sequencing in the proband yielded three heterozygous variants predicted to be linked to disease. These encoded p.Thr140Met in the Kir2.2 potassium channel, p.Asp229Asn in protein kinase C theta, and p.Thr15943Ile in titin. Since all hitherto known causative PP genes code for ion channels, we studied the Kir2.2-encoding gene, KCNJ12, for involvement in PP pathogenesis. KCNJ12 screening in 263 PP patients revealed three further variants, each in a single individual and coding for p.Gly419Ser, p.Cys75Tyr, and p.Ile283Val. All four Kir2.2 variants were functionally expressed. Only p.Thr140Met displayed relevant functional alterations, i.e. homo-tetrameric channels produced almost no current, and hetero-tetrameric channels suppressed co-expressed wildtype Kir2.1 in a dominant-negative manner. Molecular modelling showed Kir2.2 p.Thr140Met to reduce movement of potassium ions towards binding sites in the hetero-tetramer pore compatible with a reduced maximal current. MD simulations revealed loss of hydrogen bonding with the p.Thr140Met substitution. DISCUSSION: The electrophysiological findings of p.Thr140Met are similar to those found in thyrotoxic PP caused by Kir2.6 mutations. Also, the homologous Thr140 residue is mutated in Kir2.6. This supports the idea that Kir2.2 p.Thr140Met conveys susceptibility to SPP and should be included in genetic screening.


Assuntos
Predisposição Genética para Doença/genética , Paralisia Periódica Hipopotassêmica/genética , Paralisias Periódicas Familiares/genética , Canais de Potássio Corretores do Fluxo de Internalização/genética , Adolescente , Adulto , Simulação por Computador , Eletrofisiologia , Humanos , Paralisia Periódica Hipopotassêmica/fisiopatologia , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Sequenciamento do Exoma
3.
BMC Genomics ; 18(1): 350, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28472946

RESUMO

BACKGROUND: Most tailed bacteriophages (phages) feature linear dsDNA genomes. Characterizing novel phages requires an understanding of complete genome sequences, including the definition of genome physical ends. RESULT: We sequenced 48 Bacillus cereus phage isolates and analyzed Next-generation sequencing (NGS) data to resolve the genome configuration of these novel phages. Most assembled contigs featured reads that mapped to both contig ends and formed circularized contigs. Independent assemblies of 31 nearly identical I48-like Bacillus phage isolates allowed us to observe that the assembly programs tended to produce random cleavage on circularized contigs. However, currently available assemblers were not capable of reporting the underlying phage genome configuration from sequence data. To identify the genome configuration of sequenced phage in silico, a terminus prediction method was developed by means of 'neighboring coverage ratios' and 'read edge frequencies' from read alignment files. Termini were confirmed by primer walking and supported by phylogenetic inference of large DNA terminase protein sequences. CONCLUSIONS: The Terminus package using phage NGS data along with the contig circularity could efficiently identify the proximal positions of phage genome terminus. Complete phage genome sequences allow a proposed characterization of the potential packaging mechanisms and more precise genome annotation.


Assuntos
Fagos Bacilares/genética , Bacillus cereus/virologia , Genoma Viral , Sequência de Bases , Mapeamento Cromossômico , Mapeamento de Sequências Contíguas , DNA Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Análise de Sequência de DNA , Proteínas Virais/genética
4.
Neuromuscul Disord ; 27(2): 175-182, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28024841

RESUMO

In sodium channelopathies, a severe fixed myopathy caused by a dominant mutation is rare. We describe two unrelated patients with a novel variant, p.Ile1455Thr, with phenotypes of paramyotonia in one case and fixed proximal myopathy with latent myotonia in another. In-vitro whole cell patch-clamp studies show that the mutation slows inactivation and accelerates recovery, in line with other paramyotonia variants with destabilized fast inactivation as pathomechanism. Additionally, p.IleI1455 causes a loss-of-function by reduced membrane insertion, right-shift of activation, and slowed kinetics. Molecular dynamics simulations comparing wild type and mutant Nav1.4 showed that threonine substitution hindered D4S4 mobility in response to membrane depolarization, consistent with effects of the mutation on channel inactivation. The fixed myopathy is likely to be associated to gain-of-function leading to sodium accumulation, regional edema, T-tubular swelling and mitochondrial stress. A possible contribution of the loss-of-function features towards myotonia and myopathy is discussed.


Assuntos
Miotonia Congênita/genética , Miotonia Congênita/fisiopatologia , Distrofia Miotônica/genética , Distrofia Miotônica/fisiopatologia , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Técnicas de Patch-Clamp
6.
Brain ; 137(Pt 4): 998-1008, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24549961

RESUMO

Hypokalaemic periodic paralysis is typically associated with mutations of voltage sensor residues in calcium or sodium channels of skeletal muscle. To date, causative sodium channel mutations have been studied only for the two outermost arginine residues in S4 voltage sensor segments of domains I to III. These mutations produce depolarization of skeletal muscle fibres in response to reduced extracellular potassium, owing to an inward cation-selective gating pore current activated by hyperpolarization. Here, we describe mutations of the third arginine, R3, in the domain III voltage sensor i.e. an R1135H mutation which was found in two patients in separate families and a novel R1135C mutation identified in a third patient in another family. Muscle fibres from a patient harbouring the R1135H mutation showed increased depolarization tendency at normal and reduced extracellular potassium compatible with the diagnosis. Additionally, amplitude and rise time of action potentials were reduced compared with controls, even for holding potentials at which all NaV1.4 are fully recovered from inactivation. These findings may be because of an outward omega current activated at positive potentials. Expression of R1135H/C in mammalian cells indicates further gating defects that include significantly enhanced entry into inactivation and prolonged recovery that may additionally contribute to action potential inhibition at the physiological resting potential. After S4 immobilization in the outward position, mutant channels produce an inward omega current that most likely depolarizes the resting potential and produces the hypokalaemia-induced weakness. Gating current recordings reveal that mutations at R3 inhibit S4 deactivation before recovery, and molecular dynamics simulations suggest that this defect is caused by disrupted interactions of domain III S2 countercharges with S4 arginines R2 to R4 during repolarization of the membrane. This work reveals a novel mechanism of disrupted S4 translocation for hypokalaemic periodic paralysis mutations at arginine residues located below the gating pore constriction of the voltage sensor module.


Assuntos
Paralisia Periódica Hipopotassêmica/genética , Paralisia Periódica Hipopotassêmica/fisiopatologia , Músculo Esquelético/fisiopatologia , Mutação , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Potenciais de Ação/genética , Adolescente , Animais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Mutagênese Sítio-Dirigida , Técnicas de Patch-Clamp , Linhagem , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Adulto Jovem
7.
Archaea ; 2013: 373275, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24151449

RESUMO

Extremophiles, especially those in Archaea, have a myriad of adaptations that keep their cellular proteins stable and active under the extreme conditions in which they live. Rather than having one basic set of adaptations that works for all environments, Archaea have evolved separate protein features that are customized for each environment. We categorized the Archaea into three general groups to describe what is known about their protein adaptations: thermophilic, psychrophilic, and halophilic. Thermophilic proteins tend to have a prominent hydrophobic core and increased electrostatic interactions to maintain activity at high temperatures. Psychrophilic proteins have a reduced hydrophobic core and a less charged protein surface to maintain flexibility and activity under cold temperatures. Halophilic proteins are characterized by increased negative surface charge due to increased acidic amino acid content and peptide insertions, which compensates for the extreme ionic conditions. While acidophiles, alkaliphiles, and piezophiles are their own class of Archaea, their protein adaptations toward pH and pressure are less discernible. By understanding the protein adaptations used by archaeal extremophiles, we hope to be able to engineer and utilize proteins for industrial, environmental, and biotechnological applications where function in extreme conditions is required for activity.


Assuntos
Adaptação Fisiológica , Archaea/metabolismo , Proteínas Arqueais/metabolismo , Archaea/genética , Proteínas Arqueais/química , Temperatura Baixa , Meio Ambiente , Temperatura Alta , Concentração de Íons de Hidrogênio , Salinidade
8.
J Gen Physiol ; 141(5): 601-18, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23589580

RESUMO

The movement of positively charged S4 segments through the electric field drives the voltage-dependent gating of ion channels. Studies of prokaryotic sodium channels provide a mechanistic view of activation facilitated by electrostatic interactions of negatively charged residues in S1 and S2 segments, with positive counterparts in the S4 segment. In mammalian sodium channels, S4 segments promote domain-specific functions that include activation and several forms of inactivation. We tested the idea that S1-S3 countercharges regulate eukaryotic sodium channel functions, including fast inactivation. Using structural data provided by bacterial channels, we constructed homology models of the S1-S4 voltage sensor module (VSM) for each domain of the mammalian skeletal muscle sodium channel hNaV1.4. These show that side chains of putative countercharges in hNaV1.4 are oriented toward the positive charge complement of S4. We used mutagenesis to define the roles of conserved residues in the extracellular negative charge cluster (ENC), hydrophobic charge region (HCR), and intracellular negative charge cluster (INC). Activation was inhibited with charge-reversing VSM mutations in domains I-III. Charge reversal of ENC residues in domains III (E1051R, D1069K) and IV (E1373K, N1389K) destabilized fast inactivation by decreasing its probability, slowing entry, and accelerating recovery. Several INC mutations increased inactivation from closed states and slowed recovery. Our results extend the functional characterization of VSM countercharges to fast inactivation, and support the premise that these residues play a critical role in domain-specific gating transitions for a mammalian sodium channel.


Assuntos
Canais de Sódio/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Ativação do Canal Iônico/fisiologia , Cinética , Mamíferos , Dados de Sequência Molecular , Músculo Esquelético/metabolismo , Mutação , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Canal de Sódio Disparado por Voltagem NAV1.4/metabolismo , Estrutura Terciária de Proteína , Alinhamento de Sequência , Canais de Sódio/genética
9.
J Gen Virol ; 89(Pt 3): 703-708, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18272761

RESUMO

Mutations in the surface glycoprotein (G) of infectious hematopoietic necrosis virus (IHNV), a rhabdovirus that causes significant losses in hatcheries raising salmonid fish, were studied. A 303 nt segment (mid-G region) of this protein from 88 Idaho isolates of IHNV was sequenced. Evidence of positive selection at individual codon sites was estimated by using a Bayesian method (MrBayes). A software algorithm (CPHmodels) was used to construct a three-dimensional (3D) representation of the IHNV protein. The software identified structural homologies between the IHNV G protein and the surface glycoprotein of vesicular stomatitis virus (VSV) and used the VSV structure as a template for predicting the IHNV structure. The amino acids predicted to be under positive selection were mapped onto the proposed IHNV 3D structure and appeared at sites on the surface of the protein where antigen-antibody interaction should be possible. The sites identified as being under positive selection on the IHNV protein corresponded to those reported by others as active sites of mutation for IHNV, and also as antigenic sites on VSV. Knowledge of the sites where genetic variation is positively selected enables a better understanding of the interaction of the virus with its host, and with the host immune system. This information could be used to develop strategies for vaccine development for IHNV, as well as for other viruses.


Assuntos
Surtos de Doenças , Doenças dos Peixes/virologia , Vírus da Necrose Hematopoética Infecciosa/genética , Infecções por Rhabdoviridae/veterinária , Seleção Genética , Proteínas do Envelope Viral/genética , Algoritmos , Animais , Aquicultura , Teorema de Bayes , Linhagem Celular , Códon/genética , Processamento de Imagem Assistida por Computador , Vírus da Necrose Hematopoética Infecciosa/classificação , Vírus da Necrose Hematopoética Infecciosa/isolamento & purificação , Modelos Moleculares , Mutação , Infecções por Rhabdoviridae/virologia , Salmonidae/virologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo
10.
FEMS Microbiol Ecol ; 44(2): 165-73, 2003 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19719634

RESUMO

Groundwater from an oxic, fractured basalt aquifer was examined for the presence of Archaea. DNA was extracted from cells concentrated from groundwater collected from five wells penetrating the eastern Snake River Plain Aquifer (Idaho, USA). Polymerase chain reaction (PCR) amplification of 16S rDNA was performed with Archaea-specific primers using both nested (ca. 200-bp product) and direct (ca. 600-bp product) PCR approaches. Estimates of the archaeal diversity were made by separating PCR products from all five wells by denaturing gradient gel electrophoresis (DGGE) and phylogenetic analysis of partial 16S rDNA sequences from two wells was performed following cloning procedures. Archaea were detected in all wells and the number of DGGE bands per well ranged from two to nine and varied according to PCR approach. There were 30 unique clonal 16S rDNA partial sequences (ca. 600 bp) within a total of 100 clones that were screened from two wells. Twenty-two of the 16S rDNA fragments recovered from the aquifer were related to the Crenarchaeota and Euryarchaeota kingdoms (one large clade of clones in the former and six smaller clades in the latter), with sequences ranging from 23.7 to 95.4% similar to those found in other investigations. The presence of potentially thermophilic or methanogenic Archaea in this fully oxic aquifer may be related to deep thermal sources or elevated dissolved methane concentrations. Many sequences were similar to those that represent non-thermophilic Crenarchaeota of which there are no known cultured members and therefore no putative function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...